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Observation of a Turbulence-Induced Large Scale Magnetic Field
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An axisymmetric magnetic field is applied to a spherical, turbulent flow of liquid sodium. An induced
magnetic dipole moment is measured which cannot be generated by the interaction of the axisymmetric
mean flow with the applied field, indicating the presence of a turbulent electromotive force. It is shown
that the induced dipole moment should vanish for any axisymmetric laminar flow. Also observed is the
production of toroidal magnetic field from applied poloidal magnetic field (the ! effect). Its potential role
in the production of the induced dipole is discussed.
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Many stars and planets generate their own nearly axi-
symmetric magnetic fields. Understanding the mechanism
by which these fields are generated is a problem of funda-
mental importance to astrophysics. These dynamos are
sometimes modeled using two components: a process
which generates toroidal magnetic field from poloidal field
and a feedback mechanism which reinforces the poloidal
field [1]. The first process is easily modeled in an axisym-
metric system: toroidal differential rotation of a highly
conducting fluid sweeps the preexisting poloidal field in
the toroidal direction creating toroidal field. This phe-
nomenon, known as the ! effect, is efficient at producing
magnetic field and has been observed experimentally [2–
4]. The second ingredient to the model is more subtle, as
toroidal currents must be generated to reinforce the origi-
nal axisymmetric poloidal field. Cowling’s theorem [5]
excludes the possibility of an axisymmetric flow generat-
ing such currents so some symmetry-breaking mechanism
is required.

The usual mechanism invoked [6] is a turbulent electro-
motive force (EMF), E � h~v� ~bi, whereby small scale
fluctuations in the velocity and magnetic fields break the
symmetry and interact coherently to generate the large
scale magnetic field. This EMF is sometimes expanded
[7] in terms of transport coefficients about the mean mag-
netic field: E � �B� �r�B� ��B; � is character-
ized by helicity in the turbulence, � by enhanced diffusion,
and � by a gradient in the intensity of the turbulence. � is
of particular interest as it results in current flowing parallel
to a magnetic field, and when coupled with the! effect can
generate the toroidal currents needed to reinforce the po-
loidal field.

Experimental evidence for mean-field EMFs (such as
the � effect) in turbulent flows has been scarce. Three
experiments, relying on a laminar � effect, have generated
an EMF [8] and dynamo action [9,10], but heavily con-
strained flow geometries were used to produce the needed
helicity; the role of turbulence was ambiguous. Experi-
ments with unconstrained flows have provided evidence
for turbulent EMFs, though not the turbulent � effect.
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Reighard and Brown [11] have attributed a measured re-
duction in the conductivity of a turbulent flow of sodium to
the � effect. Pétrélis et al. have observed [12] distortion of
a magnetic field similar to an � effect (currents generated
in the direction of an applied magnetic field) and postulate
that turbulence may be responsible for disagreement be-
tween a laminar model and observations. Not all liquid-
metal experiments have had such results: Frick et al. have
reported [13] that the mean flow accounts for all magnetic
fields in their torus-shaped gallium experiment, and
Peffley, Cawthorne, and Lathrop [14] have observed no
such effects. It should also be noted that an � effect has
been observed in the core of magnetically confined plas-
mas [15,16].

In this Letter we report measurements of the magnetic
field induced by applying an axisymmetric magnetic field
to a turbulent, axisymmetric flow of liquid sodium. An
induced dipole moment is measured which cannot be
generated by the mean flow, indicating the presence of a
turbulent EMF.

The study is conducted in the Madison Dynamo
Experiment, a 1 m diameter stainless steel sphere contain-
ing liquid sodium. As shown in Fig. 1, two drive shafts
enter the sphere through each pole and drive 30.5 cm
diameter impellers which generate an axisymmetric mean
flow. The shafts are coupled to two 75 kW motors which
are independently controlled by variable-frequency drives.
The radial component of the magnetic field is measured by
an array of 74 temperature-compensated Hall probes
mounted to the sphere’s surface, allowing resolution of
spherical harmonic components of the external magnetic
field up to polar order of ‘ � 7 and azimuthal order ofm �
5. Magnetic fields within the sphere are measured by seven
linear arrays of Hall probes inserted into the sodium within
stainless steel sheaths. These probes are oriented to mea-
sure either the axial or toroidal component of the field.
Finally, two external electromagnets, in a Helmoltz con-
figuration coaxial with the impellers, apply a nearly uni-
form magnetic field throughout the sphere. The applied
field is between 0 and 100 G, and dominated by spherical
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FIG. 2 (color). Upper half: color contours of induced toroidal
magnetic field, B��s; z�, measured by sets of internal Hall
probes, for Rmtip � 100. Induced poloidal flux surfaces,
��s; z�, are in black. The positions of the internal Hall probes
are indicated with dots. The cylindrical axis of symmetry is
horizontal. Lower half: velocity field measured in a water model
of the Madison Dynamo Experiment, for an impeller rotation
rate of 16.7 Hz. Contours of toroidal flow, v��s; z�, are in color
and poloidal stream function, ��s; z�, are in black. The arrows
indicate the direction of the poloidal flow, and the rectangles
indicate the positions and size of the impellers which drive the
flow.

FIG. 1. Schematic of the Madison Dynamo Experiment show-
ing a cutaway view of the sphere, impellers, external field coils,
surface, and internal Hall probes.
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harmonic content of ‘ � 1, m � 0; the largest measured
m � 0 component of the applied field is less than 2% of the
axisymmetric part.

The study is conducted in the kinematic regime—the
magnetic field is not strong enough to affect the flow.
The strength of the Lorentz force relative to the inertial
forces acting on the fluid is characterized by the interac-
tion parameter (also called the Stuart number), N �
�aB2

0=�v0, where a is the radius of the sphere, � and �
are the conductivity and density of the fluid, respectively,
and B0 and v0 are characteristic magnetic and velocity field
magnitudes. N � 10�2 for a total magnetic field of 100 G
and v0 � 16:0 m=s, so the magnetic field is not expected
to alter the flow. This is confirmed by the linear depen-
dence of the induced magnetic field with respect to the
applied field. To affect the flow we would expect N � 0:1,
or B0 � 180 G, a field magnitude not yet achieved. We
note that the fluctuations, which are characterized by
slower velocities, may be in a regime that is affected by
the magnetic field.

The axisymmetric part of the velocity field generated by
the impellors can be expressed in cylindrical coordinates
�s;�; z� as

v � r��r�� v��s; z��̂; (1)

where ��s; z� is the poloidal stream function. The flow
consists of two large cells, one in the northern and one in
the southern hemisphere. An example of this flow, based on
measurements made in a water model of the sodium appa-
ratus [17], can be seen in the lower half of Fig. 2. The
poloidal cells flow inward at the equator and outward at the
poles. The two toroidal cells flow in opposing directions.
The flow is similar to the t2s2 flow proposed by Dudley
and James [18]; a flow which is calculated to magnetically
self-excite at sufficiently high magnetic Reynolds number
Rm � �0�av0, where �0 is the vacuum magnetic perme-
05500
ability (Rmtip � �0�avtip, where vtip is the impeller tip
speed). This study is conducted below the critical Rm for
self-excitation, as demonstrated by the lack of observed
growing magnetic fields. The Reynolds number of the fluid
is Re� 107; turbulent fluctuations of the measured flow
can be as large as 20% of the mean, depending on location.

Once the sphere is full of sodium the motors are started
and a constant magnetic field is applied to the sphere. Hall
probes sample the magnetic field at 1 kHz for 5 minutes;
the applied field is then subtracted from these data to
determine the induced field. Measurements of the induced
field are presented in the upper half of Fig. 2. The field is
represented by a toroidal component, B��s; z�, and poloi-
dal flux function, ��s; z�, such that

B � r��r�� B��s; z��̂: (2)

The toroidal magnetic field, undetectable by probes outside
the sphere and orthogonal to the applied poloidal field, is
measured within the sphere by internal Hall probes, con-
firming the presence of the! effect. The peak amplitude of
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FIG. 3. Induced dipole moment vs time, for Rmtip � 100 and
an applied magnetic field of 60 G. 1 G m3 corresponds to 13.2 G
at the sphere’s pole.

0 20 40 60 80 100 120 140
Rmtip

-1.0

-0.5

0.0

D
ip

ol
e 

M
om

en
t [

G
 m

3 ]

(a)

1.5

PRL 96, 055002 (2006) P H Y S I C A L R E V I E W L E T T E R S week ending
10 FEBRUARY 2006
the toroidal magnetic field scales linearly with Rm, and can
be larger than the magnitude of the applied field.

The external induced poloidal magnetic field is decom-
posed into its spherical harmonic components to reveal its
spatial structure. Since the Hall probes on the sphere’s
surface lie outside regions containing currents the mag-
netic field can be expressed as the gradient of a scalar
magnetic potential, B � �r�m, which solves Laplace’s
equation. In spherical coordinates the solution to the po-
tential, for the region excluding the origin, is well known:
�m�r; �; �� �

P
‘;mD‘;mr��‘�1�Ym‘ ��;��, where Ym‘ ��;��

is the spherical harmonic. The coefficients in the expan-
sion, D‘;m, which fit the mean induced field, are calculated
using singular value decomposition. The induced poloidal
magnetic field is predominantly axisymmetric; the largest
components are given in Table I. The dominant compo-
nents with ‘ equal to 3 and 5 are expected due to the
structure of the applied field and mean flow; the large
measured dipole component is not expected, as it cannot
be generated by the axisymmetric mean flow, as will be
shown below.

The induced dipole moment fluctuates dramatically in
time around a well-defined mean, as seen in Fig. 3.
Measurements indicate that the induced dipole depends
on Rm [Fig. 4(a)] and upon the magnitude of the externally
applied field [Fig. 4(b)]. The dipole moment’s dependence
on Rm eliminates the possibility of the measurement being
a systematic error in the analysis. The EMF depends
linearly on the applied field, indicating that it is a kinematic
effect and not due to the backreaction.

While Cowling’s theorem demonstrates that self-
excitation is not possible in axisymmetric systems, it is
not obvious that a dipole moment cannot be induced by an
axisymmetric velocity field exposed to an axisymmetric
magnetic field. The proof of this is as follows. Consider a
bounded, steady-state, axisymmetric system described by
Eq. (2). For axisymmetric fields, the only nontrivial com-
ponent of the dipole moment, � 	

R
x� Jd3x, is oriented

along the symmetry axis and results from currents flowing
in the toroidal direction,
TABLE I. Mean energy in the largest induced external poloi-
dal harmonics, maximum mean radial field on the sphere’s
surface, and field fluctuation level for several spherical harmonic
components, for Rmtip � 100 and an applied field of 60 G.

Harmonic (‘;m) Energy Br;max rms fluctuation

1; 0 (dipole) 1.6 erg 11.4 G 1.8 G
2; 0 0.2 3.1 3.5
3; 0 0.5 13.6 2.4
4; 0 0.1 7.1 3.5
5; 0 0.4 18.3 3.5
1; 1 0.0 0.8 7.8
2; 1 0.0 0.6 3.3
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�z �
Z
sJ�d

3x: (3)

These currents can only be generated by the v�B force
due to the mean fields, so using Ohm’s law gives

sJ� � s�
v� �r��r��� � �̂

� �
v�r�� �v � r���̂� � �̂ � ��r � �v��; (4)

where use has been made of r� � �̂ � 0 and the fluid has
been assumed incompressible, r � v � 0. Inserting Eq. (4)
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FIG. 4. (a) Mean induced dipole moment vs Rmtip, for an
applied field of 60 G with a quadratic fit valid at low Rm.
(b) Mean induced dipole moment vs applied magnetic field,
for Rmtip � 100. A linear fit is plotted for comparison. Error
bars are rms fluctuation levels about the mean; the uncertainties
in the mean values are very small (less than 0:01 G m3) due to
long averaging times.
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into Eq. (3) and making use of Gauss’ theorem and v � n̂ �
0, where n̂ is the unit vector normal to the vessel’s surface,
one finds that �z � 0. It is interesting to note that it is only
the dipole moment that vanishes; moments which include
different powers of s in Eq. (3) are nonzero in general. This
conclusion is also independent of geometry; any simply
connected axisymmetric system gives the same result.

It is possible that an induced dipole could be generated if
mean nonaxisymmetric magnetic and velocity field modes
interacted. The stainless steel tubes which contain the
internal Hall probes could potentially break the symmetry
and create a mean nonaxisymmetric flow. However, if this
were the case one would expect higher-order nonaxisym-
metric induced field components, which are not observed
(see Table I). The mean induced dipole moment is present
both with and without the tubes.

Since it cannot be generated by the mean flow, the dipole
moment must be the result of turbulence breaking the
symmetry of the system, likely a turbulent EMF of some
form. Any of the terms in the mean-field expansion of the
EMF have the potential to yield the observed mean dipole
moment. A toroidal � effect could produce large scale
toroidal currents by interacting with the observed ! effect.
The small scale helicity needed for the� effect might come
from either a turbulent cascade or be produced directly by
the impellers. The � effect leads to turbulent modifications
of the fluid conductivity [7]. A nonuniform � effect could
cause uneven distributions of currents to generate the
dipole moment. A third possibility is the � effect [7],
which expels magnetic field from regions of high-intensity
turbulence, resulting in diamagnetism. The intensity of the
turbulence varies with position, so the � effect and the �
effect are both candidates to explain the field.

Expanding the EMF in terms of the mean magnetic field
may not be appropriate, since the largest fluctuations in the
magnetic field do not satisfy the scale-separation and ho-
mogeneity requirements usually imposed in the expansion
of the mean-field EMF. The largest turbulent magnetic
fluctuations are m � 1. Their Gaussian probability distri-
bution is centered at zero, consistent with a passively
advected magnetic field in a turbulent cascade of velocity
fluctuations. These m � 1 fluctuations in B could, in prin-
ciple, interact with m � 1 fluctuations in the flow and
average to give a net toroidal current.

In summary, a mean dipole moment is induced in the
experiment which cannot be produced by the mean flow.
The induced currents are of the correct form to create a
poloidal magnetic field, as required in the �!-dynamo
model [1]. This is the first observation of this effect in a
laboratory experiment. Explicit characterization of the
EMF is impossible without more detailed knowledge of
the form of the turbulence and direct measurement of the
fluctuating components of v and B. Future work will be
directed towards identifying the characteristics of the fluc-
tuations responsible for producing the dipole field. We also
note that no saturation of the mechanism has yet been
05500
definitively observed, as might be expected from numerical
simulations and theory [19,20]. Future experiments with
larger magnetic fields may provide insight into the satura-
tion mechanism.
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